

сеНеѕ. Руководство администратора ver.1.2

V **C**1 · 1 · **Z**

Для WINDOWS/LINUX

Содержание

1. Введение	3
1.1. Назначение документа	
1.2. Термины	3
1.3. Назначение продукта	4
1.4. Основные функции программы	5
1.5. Технические требования	6
2. Установка	7
2.1. Установка Docker	9
2.2. Установка Docker Compose	9
2.3. Развёртывание и запуск проекта	
2.4. Обновление	14
3. Конфигурирование	
3.1. Настройка сертификата	
3.2. Настройка сервиса сбора	
3.3. Настройка сервиса DeviceMaintenance	
3.4. Настройка сервиса Identity	20
3.5. Настройка сервиса CENC	
3.6. Настройка сервиса Logger	
3.7. Настройка сервиса DataStore	
3.8. Настройка системы логирования	
1 1	

1. Введение

1.1. Назначение документа

Этот документ является Руководством администратора ceHes.

Для комфортной работы с ceHes пользователям необходимо:

- Знать основы работы с браузером.

– Владеть инструментами конфигурирования и администрирования OS Windows, OS Linux, системами виртуализации, контейнеризации Docker и СУБД PostgreSQL.

 Уметь пользоваться командной строкой и технической документацией к применяемым компонентам системы.

Руководство администратора предназначено для следующих целей:

- Помочь пользователю корректно установить и развернуть продукт.

- Ознакомить пользователя с процессом установки обновлений.

1.2. Термины

– ESB (Enterprise Service Bus) – связующее программное обеспечение, обеспечивающее централизованный и унифицированный событийноориентированный обмен сообщениями между различными информационными системами на принципах сервис-ориентированной архитектуры.

– MDM (Meter data management) – класс прикладных программ, применяемых предприятиями энергетического сектора для управления данными, полученными с приборов учёта энергии.

– **HES** (Head End System) – система, обеспечивающая коммуникацию с приборами интеллектуального учёта, для сбора, измерения, контроля параметров и предоставления доступа пользователям и внешним системам.

3/24

– DLMS (Device Language Message Specification) – открытый протокол для обмена данными с приборами учета.

– СПОДЭС – спецификация протокола обмена данными электронных счетчиков построенный на базе DLMS.

– IEC 61968 – представляет собой серию стандартов, определяющих обмен информацией между системами распределения электроэнергии.

- IEC 61968-100(2022) – интеграция приложений в электроэнергетику общего пользования. Системные интерфейсы для управления распределением. Часть 100. Профили реализации.

– CENC – сервер канала связи, основным назначением которого является обеспечение канала связи между устройствами, имеющих не постоянный (динамический) IP-адрес и ПО верхнего уровня.

1.3. Назначение продукта

«сеНеs» – коммуникационная система для организации и обеспечения взаимодействия с приборами учёта. Областью применения в рамках данной версии является серверная (облачная) платформа в виде микросервисной архитектуры в Docker-контейнерах.

Обеспечивает интеграцию с внешними MDM системами потребителя через предоставление REST-API на основе стандарта IEC 61968-100 (2022).

Система позволяет организовывать связь и обеспечивает доступ к основным функциям приборов.

Поддерживаемые приборы учёта:

- CE207 SPODES (поддержка версий 10).
- CE307 SPODES (поддержка версий 10).
- CE208 SPODES (поддержка версий 10).
- CE308 SPODES (поддержка версий 10).

Поддерживаемые функции:

Чтение данных измерений (в том числе профилей и параметров сети).

- Чтение журналов событий.

- Чтение состояния реле.

– Изменений (управление) состоянием реле.

– Чтение и запись (синхронизация) времени.

Основными областями применения сеНеѕ являются:

– Интеллектуальные системы учета электроэнергии (ИСУЭ).

- Розничный рынок электроэнергии для электросетевых компаний.

– Управляющие компании: СНТ, ДНТ, ТСЖ, УК и другие.

– Объекты АСКУЭ «нетребовательных потребителей» с поддержкой приборов учёта по протоколу СПОДЭС.

1.4. Основные функции программы

В сеНеѕ существует четыре роли пользователей по умолчанию: пользователь, оператор, администратор и m2m. У каждой роли свой набор разрешений по умолчанию:

– Пользователь. Имеет доступ к просмотру основных форм системы и чтения архивных данных показаний, состояний и событий счетчиков.

 Оператор. Имеет доступ уровня пользователь и дополнительные возможности:

– Управление устройствами: добавлять, редактировать, удалять, настраивать параметры каналов связи и протоколов.

- Управление реле устройств.

– Управление расписаниями задач.

 Администратор. Имеет доступ уровня оператор, а также доступ к управлению системой: настройка сервера, управление пользователями, просмотр логов.

5/24

– m2m. Имеет доступ к чтению списка устройств, данных и возможность обращаться к REST-API интеграции на основе стандарта IEC 61968-100(2022).

1.5. Технические требования

Для корректной работы ceHes компьютер должен соответствовать следующим минимальным требованиям:

- Минимальное разрешение экрана 1280x1024.

– Оперативная память от 4ГБ.

– Подключение к интернету.

– Браузер.

Рекомендованные браузеры:

- Google Chrome v.123.

– Firefox v.124.

- Opera v.109.

Операционные системы:

– Требования к ОС для серверной части должны соответствовать актуальным требованиям для установки Docker 4.28.х (с ядром Engine 25.х). Смотрите раздел 2.1 по установке Docker.

 – Требования к ОС для клиентской части должны соответствовать требованиям браузеров, характеристикам монитора и оперативной памяти из пункта выше.

При развертывании приложения на ПК, выступающем сервером и клиентом, требования выше должны быть совмещены.

ВНИМАНИЕ!

При использовании VPN и Proxy возможны сетевые проблемы или сложности у служб обеспечивающих работу Docker, WSL, Hyper-V. Ознакомьтесь с официальным руководством Docker и при необходимости обратитесь к системному администратору для консультации и решения совместного использования VPN, Proxy и Docker,

2. Установка

Для начала нужно подготовить систему, установив в ней Docker и Docker-Compose. Необходимо установить актуальную версию с официального сайта.

На текущий момент это Docker Desktop 4.28.0 (Engine 25.0.3, Compose 2.24.6)

Ниже на рисунках (Рисунок 1) и (Рисунок 2) приведена демонстрация версий для Windows и Linux.

Рисунок 1 – Docker Desktop, просмотр версии

Рисунок 2 – Просмотр версии Docker Desktop через консоль

Для установки на Windows необходимо иметь права локального администратора, а для Linux права уровня sudo/root.

2.1. Установка Docker

Актуальные системные требования, описание процесса установки и ссылки на загрузку Docker текущей версии приведены в официальной документации по ссылкам:

Для Windows: <u>https://docs.docker.com/desktop/windows/install</u>. Для Linux: <u>https://docs.docker.com/desktop/linux/install</u>.

ВНИМАНИЕ!

Необходимо устанавливать Docker Engine не ниже версии 24.х.

2.2. Установка Docker Compose

Для Windows он будет установлен в составе Docker Desktop.

Для Linux, если установка производилась не с пакетом Docker Desktop, необходима ручная установка.

Ниже приведен пример установки для Ubuntu 22.04.

Начнем с определения последнего выпуска Docker Compose на странице выпусков (<u>https://github.com/docker/compose/releases</u>).

ВНИМАНИЕ!

В примерах команд ниже замените версию v2.26.0 на актуальную.

Запустите следующую команду для загрузки Docker Compose и предоставьте глобальный доступ к этому ПО в своей системе:

```
$ sudo curl -k -L
"https://github.com/docker/compose/releases/download/v2.26.0/
docker-compose-$(uname -s)-$(uname -m)" -o
/usr/local/bin/docker-compose
```

Вариант запуска команды с указанием прокси-сервера:

```
$ sudo curl -x 'http:/10.5.0.9:3128' -L
"https://github.com/docker/compose/releases/download/v2.
26.0/docker-compose-$(uname -s)-$(uname -m)" -o
/usr/local/bin/docker-compose
```

Вариант запуска команды с указанием прокси–сервера и игнорирование SSL сертификата (параметр -k или --insecure):

```
$ sudo curl -k -x 'http:/10.5.0.9:3128' -L
    "https://github.com/docker/compose/releases/download/v2.
26.0/docker-compose-$(uname -s)-$(uname -m)" -o
/usr/local/bin/docker-compose
```

Затем необходимо задать правильные разрешения, чтобы сделать команду docker-compose исполняемой:

\$ sudo chmod +x /usr/local/bin/docker-compose

Чтобы проверить успешность установки, запустите следующую команду:

\$ sudo docker-compose --version

Вывод будет выглядеть следующим образом:

\$ Docker Compose version v2.26.0.

2.3. Развёртывание и запуск проекта

После того как Docker и Docker-Сортрове установлены, достаточно запустить команду развёртывания проекта из репозитория Nexus (сервис Энергомера Софт).

Для этого необходимо скопировать файлы **docker-compose.yml** и **.env** в любую папку (не рекомендуется использовать длинные пути в папках или кириллические символы).

После чего, перейдя к папке с файлами в консоли, выполнить команду (см. шаг 3 в разделе 2.4 Обновление):

Ubuntu:

\$ sudo docker-compose -p hes up -d

Windows:

docker-compose -p hes up -d

ВНИМАНИЕ!

Для обеспечения безопасности рекомендуется в docker-compose.yml перед развертыванием, прописать пароль системного администратора

СУБД PostgreSQL (заменить root на требуемый в следующих параметрах - POSTGRES_USER=root - POSTGRES_PASSWORD=root).

ВНИМАНИЕ!

Для Windows консоль управления необходимо открыть от имени администратора.

 ВНИМАНИЕ!
 Для успешного выполнения всех действий необходимо наличие интернета. В случае, если интернет доступен через прокси-сервер, то необходимо настроить систему и Docker на работу через него (рекомендуется использовать интернет без прокси-сервера).

Для исключения бесконтрольного расширения дискового пространства при внутренней процедуре логирования Docker консольного вывода контейнеров необходимо настроить ограничения на файлы логов Docker (официальная документация доступна по <u>ссылке</u>).

Например, добавив ограничения:

ВНИМАНИЕ!

```
"log-opts": {
    "max-file": "5",
    "max-size": "10m"
}
```

Это не более 5 файлов логов архива с размером не более 10МБ.

Для Docker Desktop под Windows можно выполнить настройки (Рисунок 3).

Рисунок 3 – Настройка ограничений

После изменения настроек необходимо нажать кнопку «Apply & restart».

ВНИМАНИЕ!

Возможна установка и настройка сертификата безопасности для подключения по HTTPS.

При необходимости его можно установить по пути хранения тома cloud_nginxssl. Путь можно узнать в параметре Mountpoint, выполнив команду:

```
docker volume inspect hes nginxssl
```

```
Пример вывода (Рисунок 4):
```

```
[
{
    "CreatedAt": "2023-11-27T16:24:45Z",
    "Driver": "local",
```

```
"Labels": {
                        "com.docker.compose.project": "hes",
                        "com.docker.compose.version": "2.23.3",
                        "com.docker.compose.volume": "nginxssl"
                  },
                  "Mountpoint":
"/var/lib/docker/volumes/hes nginxssl/ data",
                  "Name": "hes nginxssl",
                  "Options": null,
                  "Scope": "local"
            }
       1
 🖉 admin@cehes-dev: ~
                                                                                             ×
                                                                                       dmin@cehes-dev:~$ docker volume inspect hes_nginxssl
       "CreatedAt": "2023-11-27T16:24:45Z",
       "Driver": "local",
       "Labels": {
          "com.docker.compose.project": "hes",
"com.docker.compose.version": "2.23.3",
          "com.docker.compose.volume": "nginxssl"
       "Mountpoint": "/var/lib/docker/volumes/hes nginxssl/ data",
       "Name": "hes nginxssl",
       "Options": null,
       "Scope": "local"
admin@cehes-dev:~$ sudo tree /var/lib/docker/volumes/hes_nginxssl/_data
     - nginx-selfsigned.key
    ____ nginx-selfsigned.crt
   ssl conf
2 directories, 3 files
admin@cehes-dev:~$
```

Рисунок 4 – Пример вывода в консоли

По пути /var/lib/docker/volumes/hes_nginxssl/_data в подпапках private public необходимо расположить файлы ключа (nginx-selfsigned.key) и сертификата (nginx-selfsigned.crt).

Пример подготовки самоподписанного сертификата см. далее <u>3.1.</u> <u>Настройка сертификата</u>. Нужно обратить внимание на обязательное наличие в сертификате всех вариантов альтернативных имён DNS и IP в [alt_names]. После успешного развертывания контейнеров веб–интерфейс приложения будет доступен по ссылке <u>https://localhost</u> либо по адресу IP сервера, на котором оно было развёрнуто.

2.4. Обновление

Рекомендуется следующая последовательность шагов:

1) Остановить сервисы (Рисунок 5). Этот шаг является необязательным.

Ubuntu:

sudo docker-compose -p hes down

Windows:

docker-compose -p hes down

🚰 admin@cehes-dev: ~/hes		– 🗆 X
admin@cehes-dev:~/hes\$ sudo docke	r-compose -p hes down	
[+] Running 20/20		
Container hes-nginx-gateway	Removed	3.4s
Container hes-logger	Removed	4165
Container hes-email	Removed	3.4s
Container hes-exchanger		4.58
Container hes-maintenance-api		10.95
Container hes-esb-iec61968	Removed	4165
Container hes-localizator		3.58
Container hes-synchronizer	Removed	4165
Container hes-data-gateway		4.58
Container hes-dev-docs	Removed	2.48
Container hes-commandgateway	Removed	3.7=
Container hes-web	Removed	3.48
Container hes-scheduler		3.0s
Container hes-devices		0.85
Container hes-datastore	Removed	2.8=
Container hes-identity		1.65
Container api-gateway	Removed	0.65
Container hes-psqlserver		0.85
Container hes-rabbitmq-l	Removed	7.2s
Network hes hes-net		0.3s
admin@cehes-dev:~/hes\$		

Рисунок 5 – Остановка сервисов

2) Обновить сервисы (Рисунок 6). Этот шаг можно выполнить повторно, чтобы убедиться, что все обновления прошли успешно и более система не обнаруживает новые версии образов.

Ubuntu:

```
sudo docker-compose -p hes pull
```

Windows:

docker-compose -p hes pull	
P admin@cehes-dev: ~/hes	– o x
admin@cehes-dev:~/hes\$ sudo docker-compose -p hes pull	
<pre>logger Pulled</pre>	0.88
💊 data-gateway Pulled	0.95
💊 api-gateway Pulled	0.88
<pre>datastore Pulled</pre>	0.88
<pre>scheduler Pulled</pre>	0.88
hes-commandgateway Pulled	1.0s
<pre>devices Pulled</pre>	1.18
<pre>hes-web Pulled</pre>	0.95
<pre>localizator Pulled</pre>	0.95
💊 hes-synchronizer Pulled	0.85
hes-maintenance-api Pulled	1.05
<pre>hes-esb-iec61968 Pulled</pre>	0.95
<pre>sqlserver Pulled</pre>	0.85
💊 rabbitmq Pulled	1.18
<pre>schanger Pulled</pre>	1.0s
<pre>> hes-dev-docs Pulled</pre>	1.10
<pre>identity Pulled</pre>	1.18
<pre>hes-nginx-gateway Pulled</pre>	1.0s
💊 email Pulled	1.05
admin@cehes-dev:~/hes\$	

Рисунок 6 – Обновление сервисов

3) Запустить сервисы (Рисунок 7). Этот шаг может потребовать некоторое время, которое необходимо сервисам для инициализации настроек при их старте. Необходимо дождаться, пока у каждого сервиса будет выведено состояние Started или Healthy.

Ubuntu:

sudo docker-compose -p hes up -d

Windows:

docker-compose -p hes up -d

💕 admin@cehes-dev: ~/hes		_	×
admin@cehes-dev:~/hes\$ sudo docks	er-compose -p hes up -d		
[+] Running 20/20			
Network hes_hes-net			25
Container hes-email			8 3
Container hes-web			8 3
Container hes-psqlserver			8 3
Container hes-dev-docs			83
Container hes-synchronizer			73
Container hes-data-gateway			75
Container hes-nginx-gateway			73
💊 Container api-gateway	Healthy		73
Container hes-rabbitmq-l	Healthy		8 3
Container hes-logger			35
🔨 Container hes-maintenance-api			33
Container hes-identity	Healthy		33
Container hes-scheduler	Healthy		33
Container hes-devices	Healthy		33
Container hes-datastore	Healthy		33
Container hes-esb-iec61968			43
Container hes-exchanger			43
Container hes-localizator			43
Container hes-commandgateway			43
admin@cehes-dev:~/hes\$			

Рисунок 7 – Запуск сервисов

3. Конфигурирование

3.1. Настройка сертификата

Файл сертификата должен быть расположен по пути хранения тома hes_nginxssl. (см. подраздел <u>2.3. Развёртывание и запуск проекта</u>, в разделе <u>2. Установка</u>): /var/lib/docker/volumes/hes_nginxssl/_data. Имя файла должно быть nginx-selfsigned.crt

Для генерации самоподписанного сертификата, можно использовать openSSL.

Пример создания самоподписанного сертификата для Linux:

1. Создайте новую папку для работы и перейдите в неё:

```
mkdir /new-certs
cd /new-certs
```

2. Сгенерируйте приватный ключ:

openssl genrsa -out nginx-selfsigned.key 2048

3. Создайте текстовый файл ssl_conf следующего содержания:

[req]		
default_bits	=	4096
prompt	=	no
default_md	=	sha256

```
x509 extensions = v3 req
distinguished name = dn
[dn]
С
             = RU
ST
             = {край/область/штат}
            = {город/населенный пункт}
L
             = {организация}
0
             = {доменное имя сервера}
CN
emailAddress = {электронная почта}
[v3 req]
subjectAltName = @alt names
[alt names]
DNS.1 = { доменное имя сервера }
IP.1 = {ip-адрес сервера}
```


ВНИМАНИЕ!

Замените значения в фигурных скобках на валидные.

4. Сгенерируйте сертификат командой:

openssl req -new -x509 -key nginx-selfsigned.key -days
730 -out nginx-selfsigned.crt -config <(cat ssl conf)</pre>

Альтернативный способ генерирования ключа без файла конфигурации:

sudo openssl req -x509 -nodes -days 730 -newkey rsa:2048 -out selfsigned.crt -keyout nginx-selfsigned.key -addext "subjectAltName = DNS.1:{короткое доменное имя сервера}, DNS.2:{доменное имя сервера}, IP.1:{ip-aдрес сервера}"

В данном случае все параметры, описанные в файле конфигурации, будут запрашиваться для ввода в процессе генерации ключа.

5. Переместите ключ nginx-selfsigned.key в папку private, которая была примонтирована к сервисам nginxserver.

6. Переместите сертификат nginx-selfsigned.crt в папку public, которая была примонтирована к сервисам nginxserver.

7. Перезапустите сервисы.

Подробности можно изучить в <u>официальной документации OpenSSL</u>.

3.2. Настройка сервиса сбора

Для настройки системы сбора возможно использовать переменные окружения.

Для этого в файле docker-compose.yaml в списке сервисов необходимо найти сервис exchanger и установить требуемые значения переменных окружения. Например, для установки работы сбора в 1000 потоков:

```
exchanger:
    environment:
    - exchange concurrency=1000
```

Список переменных окружения для сбора (Таблица 1):

Переменная окружения	Значение по умолчанию	Описание
exchangeconcurrency	10	Максимальное количество
		параллельных потоков
		сбора/отправок команд
exchange_jobLifetime	00:05:00	Максимальное время
		жизни задачи
		сбора/отправки команды,
		после которого она будет
		отменена, в случае если
		отсутствует активность
		канала связи

Таблица 1	- Список	переменных	окружения	для сбора
		1	12	· 1

Переменные окружения также можно настроить, введя требуемые значения в соответствующий файл .env, расположенный рядом с dockercompose.yaml.

Пример:

EXCHANGER CONCURRENCY=1000

```
EXCHANGER_JOB_LIFETIME=00:05:00
HES NAME=DEMO
```

3.3. Настройка сервиса DeviceMaintenance

Сервис DeviceMaintenance – содержит ряд переменных окружения, которые могут использоваться для конфигурирования поведения сервиса

Список переменных окружения (Таблица 2):

Таблица 2 – Список переменных окружения сервиса DeviceMaintenance

Переменная окружения	Значение по умолчанию	Описание
HostInfoName	UNAVAILABLE	Имя хоста, которое будет
		отображаться на дашборде
		и странице с информацией
		о хосте в поле «Серийный
		номер».
HostInfo_IsCloud	true	Флаг того, что ПО
		запущено в облаке

Переменные окружения также можно настроить, введя требуемые значения в соответствующий файл .env, расположенный рядом с docker-compose.yaml.

3.4. Настройка сервиса Identity

Сервис Identity – содержит ряд переменных окружения, которые могут использоваться для конфигурирования поведения сервиса (Таблица 3).

Габлица 5 – Список переменных окружения сервиса Identity			
Переменная окружения	Значение по умолчанию	Описание	
HostURI		URI/IP-адрес хоста	
		Параметр необходимо	
		указать в соответствии с	
		настроенной	

Таблица 3 – Список переменных окружения сервиса Identity

	И	нфраструктурой, для
	В	озможности корректного
	В	осстановления пароля
	п	ользователя
AuthSettings_Signing	K	люч для подписи JWE –
	Т	окена
AuthSettings_Encryption	K	люч для шифрования
	Г	WE-токена

3.5. Настройка сервиса СЕМС

Сервис CENC – содержит следующий ряд переменных окружения, которые могут использоваться для конфигурирования его поведения.

Список переменных окружения указан в Таблице 4.

Таблица 4 – Списо	к переменных	окружения	сервиса CENC

Переменная окружения	Значение по умолчанию	Описание
CENC_Device_Listen_0	11001	Порт для подключения устройств по TCP/UDP
CENC_Device_Listen_1	11002	Порт для подключения устройств по TCP/UDP
CENC AMR Listen 0	22002	Порт для подключения ПО

ВНИМАНИЕ!

Числа в конце 0, 1 – индексы в массиве, нумерация в котором начинается с 0; таким образом, в случае если необходимо настроить 100 портов – последнее число - 99.

Настройка отправки событий в ceHES.

Необходимо указать массив событий, которые должны отправляться в ceHES.

Список событий, которые может отправлять CENC, приведен в REF Ref12 \h * MERGEFORMATTаблице 5.

-	· · · · · · · · · · · · · · · · · · ·		
Событие	Описание		
SET_CENC_DEVICE_CONNECTED	Устройство подключено		
SET_CENC_DEVICE_DISCONNECTED	Устройство отключено		
SET_CENC_DEVICE_ACCESS_START	Начало использования СЕМС в качестве		
	канала связи		
SET_CENC_DEVICE_ACCESS_FINISH	Окончание использования CENC в		
	качестве канала связи		
SET_CENC_ERROR	Системная ошибка СЕМС		
SET_CENC_AMR_USER_ADDED	AMR-агент добавлен		
SET_CENC_AMR_USER_UPDATE_NA	Обновлено имя AMR-агента		
ME			
SET_CENC_AMR_USER_UPDATE_PA	Обновлен пароль AMR-агента		
SSWORD			

Таблица 5 – События, отправляемые CENC

Для настройки событий, можно воспользоваться переменными среды и передать необходимые события из docker-compose файла.

Пример:

Plugins__Energomera.Hes.CENC.Plugins.CEHesIntegrationPlug in__notifications__0=SET_CENC_DEVICE_CONNECTED

Plugins__Energomera.Hes.CENC.Plugins.CEHesInteg

rationPlugin__notifications__1=SET_CENC_DEVICE_DISCONNECTED

В данном примере – настроили передачу событий SET_CENC_DEVICE_CONNECTED,

SET_CENC_DEVICE_DISCONNECTED B ceHES.

По умолчанию CENC отправляет события:

```
- SET_CENC_DEVICE_CONNECTED
```

- SET_CENC_DEVICE_DISCONNECTED
- SET_CENC_ERROR
- SET_CENC_AMR_USER_ADDED
- SET_CENC_AMR_USER_UPDATE_NAME
- SET_CENC_AMR_USER_UPDATE_PASSWORD

Пример пользовательской настройки сервиса CENC в dockercompos'e:

hes-cenc:

restart: always

image: hub.energomera.ru/hes/hes.cenc

container_name: hes-cenc

hostname: hes.cenc

networks:

- hes-net

ports:

- "65000:65000/tcp"
- "65000:65000/udp"
- "65001:65001/tcp"
- "65001:65001/udp"
- # Пример на случай, если на хост-машине проброс должен отличаться
 - "5000:65002/tcp"
 - "5000:65002/udp"
 - "64000:64000/tcp"

Пример на случай, если на хост-машине проброс должен отличаться

- "5001:64001/tcp"
- # Для проброса портов прямого доступа
- # "7500-8000:7500-8000"

environment:

- # кастомные порты прослушивания подключения устройств
- # внутри контейнера
- # их необходимо смаппить с портами хоста в секции `ports`
- CENC Device Listen 0=65000
- CENC Device Listen 1=65001
- CENC Device Listen 2=65002
- # кастомные порты прослушивания подключения ПО верхнего

уровня

- # внутри контейнера
- # их необходимо смаппить с портами хоста в секции `ports`
- CENC AMR Listen 0=64000
- CENC AMR Listen 1=64001

depends_on:

rabbitmq:

```
condition: service_healthy
devices:
    condition: service_healthy
identity:
    condition: service_healthy
psqlserver:
    condition: service healthy
```

3.6. Настройка сервиса Logger

Сервис Logger – служит для хранения и предоставления логгов и событий системы. Так же сервис выполняет операции очистки логов, в соответствии с переданными настройками.

Базовая настройка очистки логов может быть осуществлена с помощью переменных окружения (Таблица 6).

Переменная окружения	Значение по умолчанию	Описание
DebugLogsLifetime_Fatal	60.00:00:00	Время хранения отладочных
		логов уровня Fatal
DebugLogsLifetime_Error	60.00:00:00	Время хранения отладочных
		логов уровня Error
DebugLogsLifetime_Warning	60.00:00:00	Время хранения отладочных
		логов уровня Warning
DebugLogsLifetime_Informatio	10.00:00:00	Время хранения отладочных
n		логов уровня Information
DebugLogsLifetime_Debug	2.00:00:00	Время хранения отладочных
		логов уровня Debug
DebugLogsLifetime_Trace	1.00:00:00	Время хранения отладочных
		логов уровня Trace

Таблица 6 – Список переменных окружения сервиса Logger

3.7. Настройка сервиса DataStore

Сервис DataStore служит для хранения и предоставления измерений, журналов событий, состояний, истории выполненных команд. Так же сервис выполняет операции очистки собранных данных, в соответствии с переданными настройками. Некоторые настройки, которые при необходимости можно отредактировать, вынесены в переменные окружения (Таблица 7).

Таблица 7 – Список переменных окружения сервиса DataStore

Переменная окружения	Значение по умолчанию	Описание
archiveClear/launchFrequenc	1.00:00:00	Периодичность запуска
у		задачи очистки данных
archiveClear/functionDepth	365.00:00:00	Глубина хранения журнала
		истории выполненных
		команд

3.8. Настройка системы логирования

Все сервисы, по умолчанию, имеют возможность логгировать в файл, консоль, либо в СУБД.

В случае необходимости – каждому сервису можно индивидуально настроить логгирование. Для этого – необходимо подключиться к контейнеру и произвести редактирование файла nlog.config, который расположен в папке с приложением(/app).

Формат и примеры настройки файла nlog.config может быть найден по ссылке https://nlog-project.org/config/